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Abstract 

 
Side-channel analysis (SCA) is a cryptanalytic technique that exploits physical leakages, such 
as power consumption or electromagnetic emanations, from cryptographic devices to extract 
secret keys used in cryptographic algorithms. Recent studies have shown that training SCA 
models with semi-supervised learning can effectively overcome the problem of few labeled 
power traces. However, the process of training SCA models using semi-supervised learning 
generates many pseudo-labels. The performance of the SCA model can be reduced by some 
of these pseudo-labels. To solve this issue, we propose the HWFilter method to improve semi-
supervised SCA. This method uses a Hamming Weight Pseudo-label Filter (HWPF) to filter 
the pseudo-labels generated by the semi-supervised SCA model, which enhances the model's 
performance. Furthermore, we introduce a normal distribution method for constructing the 
HWPF. In the normal distribution method, the Hamming weights (HWs) of power traces can 
be obtained from the normal distribution of power points. These HWs are filtered and 
combined into a HWPF. The HWFilter was tested using the ASCADv1 database and the 
AES_HD dataset. The experimental results demonstrate that the HWFilter method can 
significantly enhance the performance of semi-supervised SCA models. In the ASCADv1 
database, the model with HWFilter requires only 33 power traces to recover the key. In the 
AES_HD dataset, the model with HWFilter outperforms the current best semi-supervised SCA 
model by 12%. 

 
 
Keywords: Side-channel analysis, Semi-supervised learning, Hamming weight, Pseudo-
label filter, Normal distribution. 
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1. Introduction 

Deep Learning-based Side-Channel Analysis(DL-SCA) has now become a major research 
direction in Side-Channel Analysis(SCA) field. At present, a large number of studies on the 
combination of deep learning and SCA have appeared [1]. These studies can be classified into 
three types: DL-SCA with supervised learning, DL-SCA with unsupervised learning, and DL-
SCA with semi-supervised learning. DL-SCA with supervised learning is well-suited for 
scenarios in which a substantial number of labeled power traces are available [2-4]. However, 
when the number of labeled power traces is limited, DL-SCA with supervised learning is 
susceptible to overfitting. This may result in the inability to recover the key. DL-SCA with 
unsupervised learning is suitable for scenarios where the key is unknown and a substantial 
volume of unlabeled power traces are available [5-7]. Although this type of DL-SCA exhibits 
significant advantages over traditional non-profiling SCAs such as DPA [8] and CPA [9], it 
still presents certain gaps when compared to DL-SCA with supervised learning. DL-SCA with 
semi-supervised learning overcomes the limitations of the previous two types of DL-SCA, 
enabling key recovery even when labeled power traces are scarce.  

Semi-supervised learning is a machine learning method that leverages a small amount of 
labeled data and a large amount of unlabeled data for training [10-12]. It allows the SCA model 
to extract valuable information from the unlabeled data, thereby enhancing the performance 
of the SCA model. Semi-supervised learning is proven to be more powerful than supervised 
learning when labeled data is scarce [13]. Research by Picek S et al. suggests that exploring 
SCA with semi-supervised learning can improve the performance of SCA models [14]. These 
studies demonstrate that semi-supervised learning can play a significant role in SCA. SCA 
with semi-supervised learning is based on a hypothesis that might occur in real situations. 
Picek S et al. first proposed this hypothesis and described the scenario in which it exists [14]. 
Under this hypothesis, the attacker has many constraints during the profiling phase, but only a 
few constraints during the attack phase. This allows the attacker to obtain only a small number 
of labeled power traces during the profiling phase. If there are not enough labeled power traces, 
it is difficult for the attacker to obtain a SCA model with better performance. Based on this 
hypothesis, The main challenge of SCA with semi-supervised learning is how to use very few 
labeled power traces to improve the possibility of recovering keys. Some researchers have 
employed techniques such as self-training and graph-based learning to address this challenge 
[15-17]. Biao Liu et al. proposed an attack algorithm based on collaborative learning. This 
algorithm has been able to improve accuracy by about 20% [18]. These studies show that SCA 
with semi-supervised learning can successfully recover keys even with a limited number of 
labeled power traces. 

Currently, there are several challenges in SCA with semi-supervised. One of the 
challenges is how to filter out pseudo-labels generated by the SCA model. These pseudo-labels 
encompass both correct and incorrect labels. Correct labels can enhance the model's 
performance, while incorrect ones can degrade it, potentially to the extent that the model fails 
to recover the key. A common solution is to add a confidence level during the training phase 
[19-21]. This solution is only applicable to models with two categories. Confidence level is 
unreliable for SCA models with 256 categories. Developing a method to effectively filter out 
the pseudo-labels generated by SCA models is a significant challenge for researchers. In this 
study, we propose a HWFilter method to filter out these pseudo-labels. Our experimental 
results indicate that the HWFilter method can filter out many incorrect pseudo-labels, thereby 
enhancing the performance of SCA model. Importantly, in scenarios with a limited number of 
labeled power traces, the models trained using the HWFilter method outperform those trained 
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with supervised learning methods. Our contributions can be summarized as follows: 
(1) We propose a HWFilter method, which is designed to enhance the performance of 

semi-supervised SCA models. This method uses a Hamming Weight Pseudo-label 
Filter(HWPF) to filter out the pseudo-labels generated by the semi-supervised SCA model, 
thereby reducing the incorrect pseudo-labels involved in model training. 

(2) We propose a normal distribution method for constructing HWPFs. The method can 
compute the HWs for each power consumption trace from the normal distribution of power 
consumption points. These HWs are formed into a HWPF for filtering pseudo labels. 

(3) We used the ASCADv1 database and the AES_HD dataset to test the HWFilter 
method. The experimental results show that the performance of the semi-supervised SCA 
model trained using the HWFilter method is higher than the performance of other SCA models. 

The structure of the remaining parts of this paper is as follows. Section 2 describes the 
process of SCA with semi-supervised learning. Section 3 discusses the normal distribution 
method, HWFilter method and the design of semi-supervised SCA models. Section 4 
introduces the ASCADv1 database, AES_HD dataset and the preprocessing process of the 
dataset, followed by a description of the training process of the SCA model. In section 5, we 
first present the evaluation metrics and results of the experiment. Then, we compared the 
results of our experiment with other studies. Section 6 summarizes the contributions of this 
paper. 

2. Semi-supervised learning and SCA 
The basic idea of semi-supervised learning is building a learner to label unlabeled samples 

using model assumptions on the data distribution. Semi-supervised learning is a process in 
which a semi-supervised model is trained using labeled and unlabeled data sets. In the process, 
the labeled dataset consists of multiple samples, each paired with a corresponding label. The 
unlabeled dataset contains samples that lack corresponding labels. The process of semi-
supervised learning encompasses three phases. In the first phase, a semi-supervised model is 
pre-trained using a labeled dataset. After several pre-training, this model can generate pseudo-
labels. In the second phase, this model generates pseudo-labels for the unlabeled dataset. These 
pseudo-labels are combined with samples from the unlabeled dataset to form a pseudo-labeled 
dataset. This pseudo-labeled dataset and the labeled dataset are combined into a new training 
set. In the third phase, this new dataset is used to train a pre-trained semi-supervised model. 
The second phase and the third phase are iteratively executed until the pre-trained semi-
supervised model reaches a predetermined number of training epochs. The process of semi-
supervised learning is shown in Fig. 1. The semi-supervised model in Fig. 1 is a neural 
network model used to perform classification or regression tasks. The labeled dataset and the 
unlabeled dataset in Fig. 1 are the train set of this model. The labeled dataset contains samples 
and corresponding labels, while the unlabeled dataset only contains samples without 
corresponding labels. We can distinguish between labeled and unlabeled datasets by checking 
whether there are labels corresponding to samples in the dataset. 
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Fig. 1. The process of semi-supervised learning  

Semi-supervised learning includes self-training and graph-based learning, among others. 
Self-training involves iteratively labeling unlabeled data using the model's predictions, while 
graph-based learning constructs a graph structure to exploit the geometric relationship between 
labeled and unlabeled data. The research results of Stjepan et al. indicate that the self-training 
method is most advantageous for SCA [14]. The self-training process comprises two phases: 
the profiling and the attack phase. In the profiling phase, the attacker can collect power traces 
𝑻𝑻𝑳𝑳 and intermediate values. In addition, an attacker can also collect a large number of power 
traces 𝑫𝑫𝑼𝑼 that do not have corresponding intermediate values. These two types of power traces 
are used to create two datasets: labeled dataset 𝑫𝑫𝑳𝑳and unlabeled dataset 𝑫𝑫𝑼𝑼. First, the attacker 
uses 𝑫𝑫𝑳𝑳 to pre-train an SCA model. This endows the model with the capability to predict 
intermediate values. Then, the attacker continues to train the model on 𝑫𝑫𝑳𝑳 and 𝑫𝑫𝑼𝑼. When 𝑫𝑫𝑼𝑼 
is used for training, the model generates some pseudo-labels that correspond one-to-one with 
the power traces within 𝑫𝑫𝑼𝑼. Each pseudo-label is associated with a corresponding confidence 
score. The attacker can define a confidence interval to filter these pseudo-labels. When a 
confidence score falls within this interval, the pseudo-label corresponding to this confidence 
score is added to 𝑫𝑫𝑼𝑼. 𝑫𝑫𝑳𝑳 and 𝑫𝑫𝑼𝑼 with pseudo-labels are used to continue training the model. 
The model is trained repeatedly until it achieves the expected performance. In the attack phase, 
the attacker uses the trained model to predict intermediate values on the test set. Then the 
attacker uses the intermediate values and Guess Entropy (GE) [22] to recover the key. The 
process of SCA using the self-training method is shown in Fig. 2. 
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Fig. 2. The process of using the self-training method in SCA. 

 
 

In the profiling phase of Fig. 2, pseudo-labels contain correct labels and incorrect labels. 
Correct labels can speed up the convergence of the model and improve the performance of the 
model. Incorrect labels can hinder the training of the model, which leads to the model not 
being able to recover the key in the attack phase. Therefore, filtering these pseudo-labels is 
important to recover the key. In the profiling phase, confidence intervals are used to filter the 
pseudo-labels. Correct labels correspond to a higher confidence score and incorrect labels 
correspond to a lower confidence score. Determining whether the confidence score falls within 
the confidence interval can distinguish between correct and incorrect labels. However, some 
incorrect labels correspond to a higher confidence score, which makes the confidence interval 
unable to discriminate these incorrect labels. Adding a filter to further filter these pseudo-
labels can solve this problem. 

3. HWFilter method 

In this section, we present a HWFilter method that can effectively improve the performance 
of SCA models. This method consists of two parts. The first part is about how to construct the 
HWPF. The second part is about how to use the HWPF. In Section 3.1, we propose a normal 
distribution method to construct the HWPF. In Section 3.2, we delineate the detailed procedure 
for employing the HWFilter method. Section 3.3 describes the structural design of the SCA 
model in detail. 

3.1 Normal distribution method 
The normal distribution method is a statistical method that utilizes the characteristics of power 
points following a normal distribution to construct a HWPF. This method is inspired by 
template attacks [23]. The normal distribution method consists of three steps: 

Step 1. First, we obtain 𝑁𝑁 power traces from the raw power, each power trace contains 𝐾𝐾 
points. Among them, 𝑀𝑀(𝑀𝑀 < 𝑁𝑁) power traces have 𝑀𝑀  intermediate values. The 𝑀𝑀  power 
traces 𝑇𝑇𝑀𝑀  and their corresponding intermediate values 𝑍𝑍𝑀𝑀  form a set 𝑇𝑇𝐿𝐿 =
{(𝑇𝑇𝑖𝑖,𝑍𝑍𝑖𝑖)|0 ≤ 𝑖𝑖 < 𝑀𝑀}. The remaining power traces 𝑇𝑇(𝑁𝑁−𝑀𝑀) form a set 𝑇𝑇𝑈𝑈 = �𝑇𝑇𝑗𝑗�𝑀𝑀 ≤ 𝑗𝑗 < 𝑁𝑁�. 
Each power trace in 𝑇𝑇𝐿𝐿 contains 𝐾𝐾 power consumption points. The signal-to-noise ratio (SNR) 
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values of these power consumption points are calculated using (1) [24]. In (1), 𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐸𝐸 
denote variance and mathematical expectation, respectively. 𝑍𝑍 represents intermediate value. 
𝐿𝐿𝑡𝑡 represents the 𝑖𝑖-th power trace, where 𝑖𝑖 ∈ [0,𝐾𝐾). Each power point has a SNR value. The 
index corresponding to the highest SNR value is denoted by 𝐼𝐼𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚. 

 

                                                           𝑠𝑠𝑠𝑠𝑉𝑉𝑖𝑖 =
𝑉𝑉𝑚𝑚𝑉𝑉�𝐸𝐸�𝐿𝐿𝑡𝑡�𝑍𝑍��
𝐸𝐸�𝑉𝑉𝑚𝑚𝑉𝑉�𝐿𝐿𝑡𝑡�𝑍𝑍��

                                                       (1) 

 
Step 2. Take out the power point corresponding to 𝐼𝐼𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 from 𝑀𝑀 power traces and plot 

a probability distribution graph. The probability distribution contains 9 parts, each part 
corresponds to a Hamming weight(HW). The power consumption points in each part have the 
same HW. Based on the distribution of power points with known 𝑍𝑍𝑀𝑀 , determine the HW 
corresponding to each part. For example, if the 𝑍𝑍 corresponding to a power point is 209, then 
the HW of 𝑍𝑍 is 4. This power point falls in the area of the probability distribution with HW 
equal to 4. 

Step 3. In the previous step, we calculated the HW corresponding to each part of the 
probability distribution graph. In this step, we can calculate the HW for each power trace in 
the 𝑻𝑻𝑼𝑼 using this probability distribution graph. These HW values are used to construct a 
HWPF. First, take out all the power traces in the 𝑻𝑻𝑼𝑼 and calculate the 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 corresponding 
to each power trace. Then, the HW corresponding to each power trace can be calculated based 
on 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎. As an example, if the power point corresponding to 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 is 𝒑𝒑𝒋𝒋. This 𝒑𝒑𝒋𝒋 is located 
in the area where HW is equal to 4 in the probability distribution graph, then the HW of the 
power trace corresponding to 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 is also equal to 4. 

3.2. Design of HWFilter method 
The idea of HWFilter method is to construct a HWPF to filter the pseudo-labels generated by 
the SCA model during the training phase. This subsection focuses on the HWFilter method. 
Fig. 3 describes the HWFilter method in detail. In Fig. 3, the HWFilter method consists of a 
construct HWPF phase and a Use HWPF phase. In the construct HWPF phase, we use the 
normal distribution method to construct a HWPF. In the use HWPF phase, we add the HWPF 
to the training process of the model. After that, we describe the two phases in detail. 
 

 
 

Fig. 3. The HWFilter method. 
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Construct HWPF phase: Constructing a HWPF by the normal distribution method. A 
detailed description of the normal distribution method is presented in Section 3.1. Take the 
construction of HWPF using the ASCADv1 with a fixed key dataset [24] as an example. First, 
we need to plot the SNR graph based on (1). The ASCADv1 with a fixed key dataset contains 
60,000 power traces and intermediate values. Each power trace consists of 100,000 power 
points. We extracted 40,000 power traces from the ASCADv1 with a fixed key dataset, 
including 80 with intermediate values and the rest without intermediate values. The SNR value 
corresponding to each power point on the power traces can be calculated using (1). The 
100,000 power points can generate 100000 SNR values. The 100,000 SNR values are shown 
in Fig. 4.  
 

 
 

Fig. 4. One hundred thousand SNR values are related to the intermediate values, the red dot represents 
the index of power point with the maximum SNR value. 

 
Then, the 80 power points are obtained sequentially from the 80 power traces. The index 

values of these power points are equal to the index values of the red points in Fig. 4. These 
power consumption points are plotted as a probability distribution graph, known as Fig. 5. The 
probability distribution graph contains 9 parts, each corresponding to a HW. The HWs 
corresponding to the power traces without intermediate values can be determined in Fig. 5. 
For example, if the power value of a power point is 21, the HW corresponding to this power 
consumption trace is 4. Following the above step, we can obtain the HW corresponding to all 
power traces without intermediate values. These HWs are combined into a HWPF that filters 
out pseudo-labels. 
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Fig. 5. The probability distribution graph of 100,000 power points 

  
Use HWPF phase: This step describes the process of using HWPF. Fig. 6 shows how 

HWPF filters pseudo-labels during the training phase of the model. In Fig. 6, the pre-trained 
model generates some pseudo-labels. These pseudo-labels are first filtered through a 
confidence interval and then filtered using HWPF. If the HW of a pseudo-label is equal to the 
corresponding HW in HWPF, the pseudo-label is paired with the corresponding power trace. 
Finally, this pseudo-label and the corresponding power trace are added to the new train set. 
This process is repeated until the performance of the model reaches expectations. 
 

  
Fig. 6. The process of using HWPF. 

3.3. Structural design of SCA model 
The SCA model used in this work is based on the VGG network design [25]. The model 

contains a convolutional module and a fully connected module. The convolutional module is 
used to remove noise in power traces and extract local feature values. The activation function 
in the convolution module is the ReLU function. These raw power traces are processed by the 
convolution layer to generate a large number of local features. Some of these local features 
have little relevance to the labels or are noisy. After each convolution layer, an average pooling 
layer is added to reduce the size of the local features and prevent overfitting. We used a grid 
search method to optimize multiple hyperparameters, including the number of convolutional 
layers, learning rate, and batch size, from which the optimal hyperparameters were selected. 
The hyperparameter search spaces of the SCA model are shown in Table 1. 
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Table 1. The hyperparametric search spaces of SCA models. 
Hyperparametric Options 
Convolution layers 1 to 5 in a step of 1 
Convolution kernel size 7 to 17 in a step of 2 
Pooling size 2 to 8 in a step of 1 
Learning Rate 1e-4, 8e-5, 6e-5, 4e-5, 2e-5 
Loss function NLLLoss, MSE, CEL, FLR 
Batch size 50 to 300 in a step of 20 
Training epoch 50 to 200 in a step of 20 

 
We constructed SCA models with different structures using the hyperparameters in Table 

1 and tested these models. We selected a model with the best performance from these models. 
The model contains a convolutional module and a fully connected module. The convolution 
module includes four one-dimensional convolution layers, four activation functions, four 
maximum pooling layers and one flatten layer. This flatten layer is used to flatten the output 
of the convolutional layer. Since the dimension of the output of the last convolutional layer is 
3, the output needs to be dimensionally reduced using the flatten layer. The flatten layer 
flattens the output of the convolutional layer, which facilitates the fully connected layer to map 
this output to the sample space. The model classifies classes of 256 and requires more fully 
connected layers. The last fully connected layer has 256 neurons. The size of each 
convolutional kernel is (11x1) and the size of each max-pooling layer is (2x2). The activation 
function of the convolutional module and the fully connected module is the RELU function. 
The learning rate and the loss function of the model are 0.0001 and the NLLLoss function, 
respectively. The batch size and training epoch are 200 and 300, respectively. The structure of 
the model is shown in Fig. 7. 
 

 
Fig. 7. The structure of the semi-supervised SCA model. 

4. Experiment 

In this section, we primarily present multiple public datasets and the training process of the 
semi-supervised SCA model. Our experiment is conducted using the Pytorch framework and 
Python scripts that run on an Intel Core i7-12700H CPU @ 2.3 GHz and an NVIDIA GeForce 
RTX 3060 Laptop GPU. 

4.1. Datasets 
In this study, ASCADv1 database and AES_HD dataset are used as experimental datasets. The 
ASCADv1 database and AES_HD dataset belong to the standard datasets in the SCA. The 
ASCADv1 database is publicly available at https://github.com/ANSSI-FR/ASCAD. The 
AES_HD dataset is publicly available at https://github.com/AESHD/AES_HD_Dataset. After 
that, we describe the two datasets in detail.  

https://github.com/ANSSI-FR/ASCAD
https://github.com/AESHD/AES_HD_Dataset
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ASCADv1 database: The ASCADv1 database was obtained by sampling EM traces on the 
ATMega8515. This database includes an ASCAD with a fixed key dataset and an ASCAD 
with variable keys dataset. We denote ASCAD with a fixed key dataset and ASCAD with 
variable keys dataset as ASCAD_f and ASCAD_r, respectively. The ASCAD_f has 60,000 
power traces. Each power trace contains 100,000 power points. The ASCAD_r has 300,000 
power traces. Each power trace contains 200,000 power points. The detailed ASCADv1 
database is described in [24]. In this experiment, we used power traces related to the 3-th byte 
key in the ASCAD_f. Although the ASCAD_f dataset has power traces and labels that have 
been pre-processed, it cannot be used directly as the dataset for our experiments. We extracted 
the desired power traces from raw power traces and generated the corresponding labels. The 
60,000 raw power traces 𝑇𝑇 consist of four parts: train set with labels 𝑇𝑇𝐿𝐿 , train set without labels 
𝑇𝑇𝑈𝑈, validation set 𝑇𝑇𝑉𝑉, and test set 𝑇𝑇𝑇𝑇. 
 
                                                      𝑇𝑇 = 𝑇𝑇𝐿𝐿 + 𝑇𝑇𝑈𝑈 + 𝑇𝑇𝑉𝑉 + 𝑇𝑇𝑇𝑇 ,                                                          (2) 
                                                𝑇𝑇𝐿𝐿 = {𝑇𝑇1, … ,𝑇𝑇𝑙𝑙} 

𝑇𝑇𝑈𝑈 = {𝑇𝑇𝑙𝑙+1, … ,𝑇𝑇𝑢𝑢} 
𝑇𝑇𝑉𝑉 = {𝑇𝑇𝑢𝑢+1, … ,𝑇𝑇𝑣𝑣} 
𝑇𝑇𝑇𝑇 = {𝑇𝑇𝑣𝑣+1, . . ,𝑇𝑇60000} 

 
The intermediate value labels 𝑀𝑀 associated with these power traces are shown in (3). 
 

                                                 M =  𝑀𝑀𝐿𝐿 + 𝑀𝑀𝑉𝑉 +  𝑀𝑀𝑇𝑇 
𝑀𝑀𝐿𝐿 = {𝑀𝑀0, … ,𝑀𝑀𝑙𝑙}                                                                  (3) 

         𝑀𝑀𝑉𝑉 = {𝑀𝑀𝑢𝑢+1, … ,𝑀𝑀𝑣𝑣} 
         𝑀𝑀𝑇𝑇 = {𝑀𝑀𝑣𝑣+1, … ,𝑀𝑀𝑡𝑡} 

 
Where 𝑙𝑙, 𝑢𝑢, 𝑣𝑣 and 𝑡𝑡 denote the length of each dataset, respectively. These intermediate 

values can be obtained by (4) [24]. In (4), 𝑀𝑀𝑖𝑖 and 𝑚𝑚𝑉𝑉𝑠𝑠𝑘𝑘𝑖𝑖 represent the 𝑖𝑖-th intermediate value 
and the 𝑖𝑖-th mask value, respectively. 𝑝𝑝𝑖𝑖 and 𝑚𝑚𝑉𝑉𝑠𝑠𝑘𝑘𝑖𝑖 represent the 𝑖𝑖-th plaintext and the 𝑖𝑖-th 
key, respectively. The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the byte substitution operation in the AES algorithm. 
 
                                                    𝑀𝑀𝑖𝑖 = 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑖𝑖 ⊕ 𝑘𝑘𝑖𝑖) ⊕𝑚𝑚𝑉𝑉𝑠𝑠𝑘𝑘𝑖𝑖                                               (4) 

 
Before training the model, we need to perform the pre-processing operation to select the 

power interval. The Pearson Correlation Coefficient (PCC) [26] is used for pre-processing 
operations. The PCC is shown in (5).  

 
ρ𝑇𝑇,𝑀𝑀 = 𝐸𝐸[(𝑇𝑇−μ𝑇𝑇)(𝑀𝑀−μ𝑀𝑀)]

σ𝑇𝑇σ𝑀𝑀
                                                   (5) 

Where μ𝑇𝑇 and μ𝑍𝑍 denote covariance of the power traces 𝑇𝑇 and intermediate values 𝑀𝑀, 
respectively.The Σ𝑇𝑇 and σ𝑍𝑍 denote standard deviation of 𝑇𝑇 and 𝑍𝑍, respectively. We obtained 
the PCCs associated with 1400 power points in ASCAD_f by (5). These PCCs are shown in 
Fig. 8. We then obtained the PCCs associated with 1400 power points in ASCAD_r using the 
same operation. These PCCs are shown in Fig. 9. 
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Fig. 8. About the PCC of 1400 power points in ASCAD_f. 

 

 

 
Fig. 9. About the PCC of 1400 power points in ASCAD_r. 

 

According to PCC, we can find the corresponding power points in ASCAD_f and 
ASCAD_r respectively. The power interval composed of these power points is used as the 
sample in our experiment. 
 
AES_HD dataset: The AES_HD dataset targets an unprotected implementation of AES-128. 
This dataset contains 100,000 power traces, each power trace containing 1250 power points. 
We took 700 power points with high PCC using (5) for the experiment. These 700 power 
points are shown in Fig. 10. 
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Fig. 10. The power values of 700 power points in the AES_HD dataset. 

4.2. The training process of  semi-supervised SCA model 
The training process of semi-supervised SCA model differs from that of supervised SCA 
model. This training process includes two phases: the pre-training phase and the training phase. 
In the pre-training phase, the model is trained on a labeled dataset where the labels are 
intermediate values. After a period of time, the model reaches the level of predicting 
intermediate values based on power traces. In the training phase, the model is trained on a 
mixed dataset that contains both labeled and unlabeled power traces. When this model is 
trained on the unlabeled power traces, it generates some pseudo-labels. After these pseudo 
labels are filtered, some of them are added to the mixed dataset. This dataset is used as a train 
set for the model. The training process of the semi-supervised model is shown in Algorithm 
1.  
 

Algorithm 1 The training process of semi-supervised SCA model. 
Input: Train set with labels: 𝐷𝐷𝐿𝐿 = {(𝑡𝑡𝑖𝑖𝐿𝐿 , 𝑙𝑙𝑖𝑖𝐿𝐿) | 𝑖𝑖 ∈ [0, 𝑁𝑁)}. 
            Train set without labels: 𝐷𝐷𝑈𝑈 = �𝑡𝑡𝑗𝑗𝑈𝑈� 𝑗𝑗 ∈ [0, 𝑀𝑀)}. 
1: for 𝑒𝑒𝑝𝑝𝑉𝑉𝑝𝑝−𝑡𝑡𝑉𝑉𝑚𝑚𝑖𝑖𝑡𝑡  ← 0 Do 
2:       for 𝑖𝑖 ← 0 Do 
3:             (𝑡𝑡𝑖𝑖𝐿𝐿 , 𝑙𝑙𝑖𝑖𝐿𝐿) ←  𝐷𝐷𝐿𝐿 .  
4:             Model_pre-train(𝑡𝑡𝑖𝑖𝐿𝐿 , 𝑙𝑙𝑖𝑖𝐿𝐿). 
5:       end for 
6: end for 
7: for 𝑒𝑒𝑡𝑡𝑉𝑉𝑚𝑚𝑖𝑖𝑡𝑡  ← 0 Do 
8:       for 𝑗𝑗 ← 0 Do 
9:            𝑡𝑡𝑙𝑙𝑈𝑈  ←  𝐷𝐷𝑈𝑈 . 
10:          Model_train(𝑡𝑡𝑙𝑙𝑈𝑈). 
11:          The model generates pseudo-label 𝑝𝑝𝑗𝑗𝑈𝑈. 
12:          Determine whether the confidence level of 𝑝𝑝𝑗𝑗𝑈𝑈 is greater than 0.1. 
13:          Determine whether the HW of 𝑝𝑝𝑗𝑗𝑈𝑈 is equal to the corresponding HW in the HWPF. 
14:          This  𝑝𝑝𝑗𝑗𝑈𝑈 is added to the pseudo-label dataset 𝐷𝐷𝑃𝑃 . 
15:     end for 
16:     for 𝑘𝑘 ← 0 Do 
17:            (𝑡𝑡𝑘𝑘𝑃𝑃, 𝑝𝑝𝑘𝑘𝑃𝑃) ←  𝐷𝐷𝑃𝑃. 
18:            Model_train(𝑡𝑡𝑘𝑘𝑃𝑃, 𝑝𝑝𝑘𝑘𝑃𝑃). 
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19:     end for 
20: end for 

 

5. Experimental results and analysis 
 
The GE [22] was used as the evaluation metric for this experiment. In SCA, GE is a 

frequently used metric for evaluating the security of cryptographic implementations. GE 
quantifies the number of attempts an attacker needs to make to successfully guess the secret 
key. The use of GE allows for an effective evaluation of the attack effects of an SCA model. 
The GE indicates the mean rank of real key sorted by predicted probabilities or scores. For 
each power trace, the model predicts all probability that guesses key 𝑘𝑘∗ are real key 𝑘𝑘𝑐𝑐. These 
possibilities are accumulated and ranked. The GE is 0 when 𝑘𝑘∗ with the highest probability is 
equal to the 𝑘𝑘𝑐𝑐. The formula corresponding to GE is as follows.  

 
𝐺𝐺𝐸𝐸 = 𝑉𝑉𝑣𝑣𝑒𝑒𝑉𝑉𝑉𝑉𝑎𝑎𝑒𝑒(∑ 𝑉𝑉𝑉𝑉𝑠𝑠𝑘𝑘(𝑘𝑘∗ = 𝑘𝑘𝑐𝑐)50

𝑖𝑖=1 )                                             (6) 
 

This section focuses on evaluating the performance of HWFilter on the semi-supervised 
SCA model. Semi-supervised SCA models include the HW model, the Hamming Distance 
(HD) model, and the identity(ID) model. The ID model is the most widely used semi-
supervised SCA model. In this experiment, we tested the performance of HWFilter using the 
ID model. We first compared the performance of ID model with HWPF and the performance 
of ID model without HWPF by using the ASCAD_f. We classify the power traces into 3 levels, 
where each level contains labeled power traces and unlabeled power traces. These three levels 
are shown in (7). 

 
         𝐿𝐿𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙1    𝑇𝑇𝐿𝐿: 80,𝑇𝑇𝑈𝑈: 7920 (1% 𝑣𝑣𝑠𝑠 99%)                                         (7) 

                                           𝐿𝐿𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙2    𝑇𝑇𝐿𝐿: 320,𝑇𝑇𝑈𝑈: 7680 (4% 𝑣𝑣𝑠𝑠 96%) 
                                           𝐿𝐿𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙3    𝑇𝑇𝐿𝐿: 1600,𝑇𝑇𝑈𝑈: 6400 (20% 𝑣𝑣𝑠𝑠 80%) 

 
We used ASCAD_f and ASCAD_r to conduct the experiments, respectively. Fig. 11 

shows the GE of different ID models on ASCAD_f. The performance of ID models with 
HWPF is better than those without HWPF when the number of power traces with intermediate 
values is very small.  
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Fig. 11. The GE results of different ID models on ASCAD_f. 

 
We then tested the performance of ID model with HWPF on the ASCAD_r. Although the 

ASCAD_r is more difficult than the ASCAD_f dataset, ID model with HWPF still performs 
well. The ID model with HWPF can use fewer power traces to recover key when the number 
of power traces with intermediate values is reduced. The performance of different ID model 
on the ASCAD_r is shown in Fig. 12. 

 

 
Fig. 12. The GE results of different ID models on ASCAD_r. 

 
Table 2 shows the performance of HWPF on the AES_HD dataset. Although the 

maximum PCC of the AES_HD dataset is only 0.041, HWPF can still improve the 
performance of the ID model. When the number of labeled power traces is only 10,000, the 
performance of the model with HWFilter is 12% higher than that of Picek et al. model [14]. 

 
Table 2. GE results on AES_HD dataset (– if not reached). 

Dataset size Proposed method Picek et al., “2019[14] 
500+24.5k - - 
1k+24.5k 27523 - 
10k+15k 10971 12385 

https://link.springer.com/chapter/10.1007/978-3-030-15462-2_3
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Table 3 shows the performance of HWPF on the ASCAD_f. The performance of the 
semi-supervised SCA model with HWPF is higher than that of the supervised SCA model for 
a smaller number of labeled power traces. As the number of labeled power consumption 
trajectories increases, the performance of the semi-supervised SCA model with HWPF and the 
supervised SCA model converge to be equal. 

 
Table 3. GE results on ASCAD_f (– if not reached). 

Dataset size Proposed method  Ryad et al., “2020 [24] 
250+11.75k 321 - 
500+11.5k 54 265 
5k+7k 33 36 

 
Table 4 shows the performance of HWPF on the ASCAD_r. Semi-supervised SCA 

models with HWPF still have advantages over supervised SCA models on ASCAD_r. The 
semi-supervised SCA model with HWPF has maintained good performance under the 
condition of being trained with different labeled power traces. 

 
Table 4. GE results on ASCAD_r (– if not reached). 

Dataset size Proposed method  Ryad et al., “2020 [24] 
250+11.75k - - 
500+11.5k 201 375 
5k+7k 47 53 

6. Conclusions 
In this paper, a HWFilter method is proposed to improve the performance of semi-supervised 
SCA models. This method can reduce the number of erroneous pseudo-labels and accelerate 
the convergence of the model. In addition, we propose a normal distribution method for 
constructing HWPF. This HWPF can be used to filter pseudo-labels generated by semi-
supervised SCA models. We also designed the structure of the semi-supervised SCA model 
using a grid search method. Finally, we conducted semi-supervised SCA experiments using 
the ASCADv1 database and the AES_HD dataset. These experimental results show that 
HWFilter can promote the training of semi-supervised SCA models. In particular, when the 
number of labeled power traces is small, the model trained using the HWFilter method 
outperforms the model trained using the supervised method. In this paper, we present some 
methods to solve the problem of erroneous pseudo-labels that hinder the training of semi-
supervised SCA models. More research is needed in the future to investigate how semi-
supervised learning can further promote the development of the SCA field. 
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