
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, Mar. 2024 738
Copyright ⓒ 2024 KSII

http://doi.org/10.3837/tiis.2024.03.012 ISSN : 1976-7277

Improve the Performance of Semi-
Supervised Side-channel Analysis Using

HWFilter Method

Hong Zhang1,2, Lang Li1,2* and Di Li1,2
1 College of Computer Science and Technology, Hengyang Normal University Hengyang 421002, China

2 Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal
University, Hengyang, 421002 China

[e-mail: zhng572@gmail.com; lilang911@126.com; lidi9007@163.com]
*Corresponding author: Lang Li

Received May 7, 2023; revised December 18, 2023; accepted February 26, 2024;

published March 31, 2024

Abstract

Side-channel analysis (SCA) is a cryptanalytic technique that exploits physical leakages, such
as power consumption or electromagnetic emanations, from cryptographic devices to extract
secret keys used in cryptographic algorithms. Recent studies have shown that training SCA
models with semi-supervised learning can effectively overcome the problem of few labeled
power traces. However, the process of training SCA models using semi-supervised learning
generates many pseudo-labels. The performance of the SCA model can be reduced by some
of these pseudo-labels. To solve this issue, we propose the HWFilter method to improve semi-
supervised SCA. This method uses a Hamming Weight Pseudo-label Filter (HWPF) to filter
the pseudo-labels generated by the semi-supervised SCA model, which enhances the model's
performance. Furthermore, we introduce a normal distribution method for constructing the
HWPF. In the normal distribution method, the Hamming weights (HWs) of power traces can
be obtained from the normal distribution of power points. These HWs are filtered and
combined into a HWPF. The HWFilter was tested using the ASCADv1 database and the
AES_HD dataset. The experimental results demonstrate that the HWFilter method can
significantly enhance the performance of semi-supervised SCA models. In the ASCADv1
database, the model with HWFilter requires only 33 power traces to recover the key. In the
AES_HD dataset, the model with HWFilter outperforms the current best semi-supervised SCA
model by 12%.

Keywords: Side-channel analysis, Semi-supervised learning, Hamming weight, Pseudo-
label filter, Normal distribution.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 739

1. Introduction

Deep Learning-based Side-Channel Analysis(DL-SCA) has now become a major research
direction in Side-Channel Analysis(SCA) field. At present, a large number of studies on the
combination of deep learning and SCA have appeared [1]. These studies can be classified into
three types: DL-SCA with supervised learning, DL-SCA with unsupervised learning, and DL-
SCA with semi-supervised learning. DL-SCA with supervised learning is well-suited for
scenarios in which a substantial number of labeled power traces are available [2-4]. However,
when the number of labeled power traces is limited, DL-SCA with supervised learning is
susceptible to overfitting. This may result in the inability to recover the key. DL-SCA with
unsupervised learning is suitable for scenarios where the key is unknown and a substantial
volume of unlabeled power traces are available [5-7]. Although this type of DL-SCA exhibits
significant advantages over traditional non-profiling SCAs such as DPA [8] and CPA [9], it
still presents certain gaps when compared to DL-SCA with supervised learning. DL-SCA with
semi-supervised learning overcomes the limitations of the previous two types of DL-SCA,
enabling key recovery even when labeled power traces are scarce.

Semi-supervised learning is a machine learning method that leverages a small amount of
labeled data and a large amount of unlabeled data for training [10-12]. It allows the SCA model
to extract valuable information from the unlabeled data, thereby enhancing the performance
of the SCA model. Semi-supervised learning is proven to be more powerful than supervised
learning when labeled data is scarce [13]. Research by Picek S et al. suggests that exploring
SCA with semi-supervised learning can improve the performance of SCA models [14]. These
studies demonstrate that semi-supervised learning can play a significant role in SCA. SCA
with semi-supervised learning is based on a hypothesis that might occur in real situations.
Picek S et al. first proposed this hypothesis and described the scenario in which it exists [14].
Under this hypothesis, the attacker has many constraints during the profiling phase, but only a
few constraints during the attack phase. This allows the attacker to obtain only a small number
of labeled power traces during the profiling phase. If there are not enough labeled power traces,
it is difficult for the attacker to obtain a SCA model with better performance. Based on this
hypothesis, The main challenge of SCA with semi-supervised learning is how to use very few
labeled power traces to improve the possibility of recovering keys. Some researchers have
employed techniques such as self-training and graph-based learning to address this challenge
[15-17]. Biao Liu et al. proposed an attack algorithm based on collaborative learning. This
algorithm has been able to improve accuracy by about 20% [18]. These studies show that SCA
with semi-supervised learning can successfully recover keys even with a limited number of
labeled power traces.

Currently, there are several challenges in SCA with semi-supervised. One of the
challenges is how to filter out pseudo-labels generated by the SCA model. These pseudo-labels
encompass both correct and incorrect labels. Correct labels can enhance the model's
performance, while incorrect ones can degrade it, potentially to the extent that the model fails
to recover the key. A common solution is to add a confidence level during the training phase
[19-21]. This solution is only applicable to models with two categories. Confidence level is
unreliable for SCA models with 256 categories. Developing a method to effectively filter out
the pseudo-labels generated by SCA models is a significant challenge for researchers. In this
study, we propose a HWFilter method to filter out these pseudo-labels. Our experimental
results indicate that the HWFilter method can filter out many incorrect pseudo-labels, thereby
enhancing the performance of SCA model. Importantly, in scenarios with a limited number of
labeled power traces, the models trained using the HWFilter method outperform those trained

740 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

with supervised learning methods. Our contributions can be summarized as follows:
(1) We propose a HWFilter method, which is designed to enhance the performance of

semi-supervised SCA models. This method uses a Hamming Weight Pseudo-label
Filter(HWPF) to filter out the pseudo-labels generated by the semi-supervised SCA model,
thereby reducing the incorrect pseudo-labels involved in model training.

(2) We propose a normal distribution method for constructing HWPFs. The method can
compute the HWs for each power consumption trace from the normal distribution of power
consumption points. These HWs are formed into a HWPF for filtering pseudo labels.

(3) We used the ASCADv1 database and the AES_HD dataset to test the HWFilter
method. The experimental results show that the performance of the semi-supervised SCA
model trained using the HWFilter method is higher than the performance of other SCA models.

The structure of the remaining parts of this paper is as follows. Section 2 describes the
process of SCA with semi-supervised learning. Section 3 discusses the normal distribution
method, HWFilter method and the design of semi-supervised SCA models. Section 4
introduces the ASCADv1 database, AES_HD dataset and the preprocessing process of the
dataset, followed by a description of the training process of the SCA model. In section 5, we
first present the evaluation metrics and results of the experiment. Then, we compared the
results of our experiment with other studies. Section 6 summarizes the contributions of this
paper.

2. Semi-supervised learning and SCA
The basic idea of semi-supervised learning is building a learner to label unlabeled samples

using model assumptions on the data distribution. Semi-supervised learning is a process in
which a semi-supervised model is trained using labeled and unlabeled data sets. In the process,
the labeled dataset consists of multiple samples, each paired with a corresponding label. The
unlabeled dataset contains samples that lack corresponding labels. The process of semi-
supervised learning encompasses three phases. In the first phase, a semi-supervised model is
pre-trained using a labeled dataset. After several pre-training, this model can generate pseudo-
labels. In the second phase, this model generates pseudo-labels for the unlabeled dataset. These
pseudo-labels are combined with samples from the unlabeled dataset to form a pseudo-labeled
dataset. This pseudo-labeled dataset and the labeled dataset are combined into a new training
set. In the third phase, this new dataset is used to train a pre-trained semi-supervised model.
The second phase and the third phase are iteratively executed until the pre-trained semi-
supervised model reaches a predetermined number of training epochs. The process of semi-
supervised learning is shown in Fig. 1. The semi-supervised model in Fig. 1 is a neural
network model used to perform classification or regression tasks. The labeled dataset and the
unlabeled dataset in Fig. 1 are the train set of this model. The labeled dataset contains samples
and corresponding labels, while the unlabeled dataset only contains samples without
corresponding labels. We can distinguish between labeled and unlabeled datasets by checking
whether there are labels corresponding to samples in the dataset.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 741

Fig. 1. The process of semi-supervised learning

Semi-supervised learning includes self-training and graph-based learning, among others.
Self-training involves iteratively labeling unlabeled data using the model's predictions, while
graph-based learning constructs a graph structure to exploit the geometric relationship between
labeled and unlabeled data. The research results of Stjepan et al. indicate that the self-training
method is most advantageous for SCA [14]. The self-training process comprises two phases:
the profiling and the attack phase. In the profiling phase, the attacker can collect power traces
𝑻𝑻𝑳𝑳 and intermediate values. In addition, an attacker can also collect a large number of power
traces 𝑫𝑫𝑼𝑼 that do not have corresponding intermediate values. These two types of power traces
are used to create two datasets: labeled dataset 𝑫𝑫𝑳𝑳and unlabeled dataset 𝑫𝑫𝑼𝑼. First, the attacker
uses 𝑫𝑫𝑳𝑳 to pre-train an SCA model. This endows the model with the capability to predict
intermediate values. Then, the attacker continues to train the model on 𝑫𝑫𝑳𝑳 and 𝑫𝑫𝑼𝑼. When 𝑫𝑫𝑼𝑼
is used for training, the model generates some pseudo-labels that correspond one-to-one with
the power traces within 𝑫𝑫𝑼𝑼. Each pseudo-label is associated with a corresponding confidence
score. The attacker can define a confidence interval to filter these pseudo-labels. When a
confidence score falls within this interval, the pseudo-label corresponding to this confidence
score is added to 𝑫𝑫𝑼𝑼. 𝑫𝑫𝑳𝑳 and 𝑫𝑫𝑼𝑼 with pseudo-labels are used to continue training the model.
The model is trained repeatedly until it achieves the expected performance. In the attack phase,
the attacker uses the trained model to predict intermediate values on the test set. Then the
attacker uses the intermediate values and Guess Entropy (GE) [22] to recover the key. The
process of SCA using the self-training method is shown in Fig. 2.

742 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

Fig. 2. The process of using the self-training method in SCA.

In the profiling phase of Fig. 2, pseudo-labels contain correct labels and incorrect labels.
Correct labels can speed up the convergence of the model and improve the performance of the
model. Incorrect labels can hinder the training of the model, which leads to the model not
being able to recover the key in the attack phase. Therefore, filtering these pseudo-labels is
important to recover the key. In the profiling phase, confidence intervals are used to filter the
pseudo-labels. Correct labels correspond to a higher confidence score and incorrect labels
correspond to a lower confidence score. Determining whether the confidence score falls within
the confidence interval can distinguish between correct and incorrect labels. However, some
incorrect labels correspond to a higher confidence score, which makes the confidence interval
unable to discriminate these incorrect labels. Adding a filter to further filter these pseudo-
labels can solve this problem.

3. HWFilter method

In this section, we present a HWFilter method that can effectively improve the performance
of SCA models. This method consists of two parts. The first part is about how to construct the
HWPF. The second part is about how to use the HWPF. In Section 3.1, we propose a normal
distribution method to construct the HWPF. In Section 3.2, we delineate the detailed procedure
for employing the HWFilter method. Section 3.3 describes the structural design of the SCA
model in detail.

3.1 Normal distribution method
The normal distribution method is a statistical method that utilizes the characteristics of power
points following a normal distribution to construct a HWPF. This method is inspired by
template attacks [23]. The normal distribution method consists of three steps:

Step 1. First, we obtain 𝑁𝑁 power traces from the raw power, each power trace contains 𝐾𝐾
points. Among them, 𝑀𝑀(𝑀𝑀 < 𝑁𝑁) power traces have 𝑀𝑀 intermediate values. The 𝑀𝑀 power
traces 𝑇𝑇𝑀𝑀 and their corresponding intermediate values 𝑍𝑍𝑀𝑀 form a set 𝑇𝑇𝐿𝐿 =
{(𝑇𝑇𝑖𝑖,𝑍𝑍𝑖𝑖)|0 ≤ 𝑖𝑖 < 𝑀𝑀}. The remaining power traces 𝑇𝑇(𝑁𝑁−𝑀𝑀) form a set 𝑇𝑇𝑈𝑈 = �𝑇𝑇𝑗𝑗�𝑀𝑀 ≤ 𝑗𝑗 < 𝑁𝑁�.
Each power trace in 𝑇𝑇𝐿𝐿 contains 𝐾𝐾 power consumption points. The signal-to-noise ratio (SNR)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 743

values of these power consumption points are calculated using (1) [24]. In (1), 𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐸𝐸
denote variance and mathematical expectation, respectively. 𝑍𝑍 represents intermediate value.
𝐿𝐿𝑡𝑡 represents the 𝑖𝑖-th power trace, where 𝑖𝑖 ∈ [0,𝐾𝐾). Each power point has a SNR value. The
index corresponding to the highest SNR value is denoted by 𝐼𝐼𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚.

 𝑠𝑠𝑠𝑠𝑉𝑉𝑖𝑖 =
𝑉𝑉𝑚𝑚𝑉𝑉�𝐸𝐸�𝐿𝐿𝑡𝑡�𝑍𝑍��
𝐸𝐸�𝑉𝑉𝑚𝑚𝑉𝑉�𝐿𝐿𝑡𝑡�𝑍𝑍��

 (1)

Step 2. Take out the power point corresponding to 𝐼𝐼𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 from 𝑀𝑀 power traces and plot

a probability distribution graph. The probability distribution contains 9 parts, each part
corresponds to a Hamming weight(HW). The power consumption points in each part have the
same HW. Based on the distribution of power points with known 𝑍𝑍𝑀𝑀 , determine the HW
corresponding to each part. For example, if the 𝑍𝑍 corresponding to a power point is 209, then
the HW of 𝑍𝑍 is 4. This power point falls in the area of the probability distribution with HW
equal to 4.

Step 3. In the previous step, we calculated the HW corresponding to each part of the
probability distribution graph. In this step, we can calculate the HW for each power trace in
the 𝑻𝑻𝑼𝑼 using this probability distribution graph. These HW values are used to construct a
HWPF. First, take out all the power traces in the 𝑻𝑻𝑼𝑼 and calculate the 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 corresponding
to each power trace. Then, the HW corresponding to each power trace can be calculated based
on 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎. As an example, if the power point corresponding to 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 is 𝒑𝒑𝒋𝒋. This 𝒑𝒑𝒋𝒋 is located
in the area where HW is equal to 4 in the probability distribution graph, then the HW of the
power trace corresponding to 𝑰𝑰𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 is also equal to 4.

3.2. Design of HWFilter method
The idea of HWFilter method is to construct a HWPF to filter the pseudo-labels generated by
the SCA model during the training phase. This subsection focuses on the HWFilter method.
Fig. 3 describes the HWFilter method in detail. In Fig. 3, the HWFilter method consists of a
construct HWPF phase and a Use HWPF phase. In the construct HWPF phase, we use the
normal distribution method to construct a HWPF. In the use HWPF phase, we add the HWPF
to the training process of the model. After that, we describe the two phases in detail.

Fig. 3. The HWFilter method.

744 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

Construct HWPF phase: Constructing a HWPF by the normal distribution method. A
detailed description of the normal distribution method is presented in Section 3.1. Take the
construction of HWPF using the ASCADv1 with a fixed key dataset [24] as an example. First,
we need to plot the SNR graph based on (1). The ASCADv1 with a fixed key dataset contains
60,000 power traces and intermediate values. Each power trace consists of 100,000 power
points. We extracted 40,000 power traces from the ASCADv1 with a fixed key dataset,
including 80 with intermediate values and the rest without intermediate values. The SNR value
corresponding to each power point on the power traces can be calculated using (1). The
100,000 power points can generate 100000 SNR values. The 100,000 SNR values are shown
in Fig. 4.

Fig. 4. One hundred thousand SNR values are related to the intermediate values, the red dot represents
the index of power point with the maximum SNR value.

Then, the 80 power points are obtained sequentially from the 80 power traces. The index

values of these power points are equal to the index values of the red points in Fig. 4. These
power consumption points are plotted as a probability distribution graph, known as Fig. 5. The
probability distribution graph contains 9 parts, each corresponding to a HW. The HWs
corresponding to the power traces without intermediate values can be determined in Fig. 5.
For example, if the power value of a power point is 21, the HW corresponding to this power
consumption trace is 4. Following the above step, we can obtain the HW corresponding to all
power traces without intermediate values. These HWs are combined into a HWPF that filters
out pseudo-labels.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 745

Fig. 5. The probability distribution graph of 100,000 power points

Use HWPF phase: This step describes the process of using HWPF. Fig. 6 shows how

HWPF filters pseudo-labels during the training phase of the model. In Fig. 6, the pre-trained
model generates some pseudo-labels. These pseudo-labels are first filtered through a
confidence interval and then filtered using HWPF. If the HW of a pseudo-label is equal to the
corresponding HW in HWPF, the pseudo-label is paired with the corresponding power trace.
Finally, this pseudo-label and the corresponding power trace are added to the new train set.
This process is repeated until the performance of the model reaches expectations.

Fig. 6. The process of using HWPF.

3.3. Structural design of SCA model
The SCA model used in this work is based on the VGG network design [25]. The model

contains a convolutional module and a fully connected module. The convolutional module is
used to remove noise in power traces and extract local feature values. The activation function
in the convolution module is the ReLU function. These raw power traces are processed by the
convolution layer to generate a large number of local features. Some of these local features
have little relevance to the labels or are noisy. After each convolution layer, an average pooling
layer is added to reduce the size of the local features and prevent overfitting. We used a grid
search method to optimize multiple hyperparameters, including the number of convolutional
layers, learning rate, and batch size, from which the optimal hyperparameters were selected.
The hyperparameter search spaces of the SCA model are shown in Table 1.

746 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

Table 1. The hyperparametric search spaces of SCA models.
Hyperparametric Options
Convolution layers 1 to 5 in a step of 1
Convolution kernel size 7 to 17 in a step of 2
Pooling size 2 to 8 in a step of 1
Learning Rate 1e-4, 8e-5, 6e-5, 4e-5, 2e-5
Loss function NLLLoss, MSE, CEL, FLR
Batch size 50 to 300 in a step of 20
Training epoch 50 to 200 in a step of 20

We constructed SCA models with different structures using the hyperparameters in Table

1 and tested these models. We selected a model with the best performance from these models.
The model contains a convolutional module and a fully connected module. The convolution
module includes four one-dimensional convolution layers, four activation functions, four
maximum pooling layers and one flatten layer. This flatten layer is used to flatten the output
of the convolutional layer. Since the dimension of the output of the last convolutional layer is
3, the output needs to be dimensionally reduced using the flatten layer. The flatten layer
flattens the output of the convolutional layer, which facilitates the fully connected layer to map
this output to the sample space. The model classifies classes of 256 and requires more fully
connected layers. The last fully connected layer has 256 neurons. The size of each
convolutional kernel is (11x1) and the size of each max-pooling layer is (2x2). The activation
function of the convolutional module and the fully connected module is the RELU function.
The learning rate and the loss function of the model are 0.0001 and the NLLLoss function,
respectively. The batch size and training epoch are 200 and 300, respectively. The structure of
the model is shown in Fig. 7.

Fig. 7. The structure of the semi-supervised SCA model.

4. Experiment

In this section, we primarily present multiple public datasets and the training process of the
semi-supervised SCA model. Our experiment is conducted using the Pytorch framework and
Python scripts that run on an Intel Core i7-12700H CPU @ 2.3 GHz and an NVIDIA GeForce
RTX 3060 Laptop GPU.

4.1. Datasets
In this study, ASCADv1 database and AES_HD dataset are used as experimental datasets. The
ASCADv1 database and AES_HD dataset belong to the standard datasets in the SCA. The
ASCADv1 database is publicly available at https://github.com/ANSSI-FR/ASCAD. The
AES_HD dataset is publicly available at https://github.com/AESHD/AES_HD_Dataset. After
that, we describe the two datasets in detail.

https://github.com/ANSSI-FR/ASCAD
https://github.com/AESHD/AES_HD_Dataset

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 747

ASCADv1 database: The ASCADv1 database was obtained by sampling EM traces on the
ATMega8515. This database includes an ASCAD with a fixed key dataset and an ASCAD
with variable keys dataset. We denote ASCAD with a fixed key dataset and ASCAD with
variable keys dataset as ASCAD_f and ASCAD_r, respectively. The ASCAD_f has 60,000
power traces. Each power trace contains 100,000 power points. The ASCAD_r has 300,000
power traces. Each power trace contains 200,000 power points. The detailed ASCADv1
database is described in [24]. In this experiment, we used power traces related to the 3-th byte
key in the ASCAD_f. Although the ASCAD_f dataset has power traces and labels that have
been pre-processed, it cannot be used directly as the dataset for our experiments. We extracted
the desired power traces from raw power traces and generated the corresponding labels. The
60,000 raw power traces 𝑇𝑇 consist of four parts: train set with labels 𝑇𝑇𝐿𝐿 , train set without labels
𝑇𝑇𝑈𝑈, validation set 𝑇𝑇𝑉𝑉, and test set 𝑇𝑇𝑇𝑇.

 𝑇𝑇 = 𝑇𝑇𝐿𝐿 + 𝑇𝑇𝑈𝑈 + 𝑇𝑇𝑉𝑉 + 𝑇𝑇𝑇𝑇 , (2)
 𝑇𝑇𝐿𝐿 = {𝑇𝑇1, … ,𝑇𝑇𝑙𝑙}

𝑇𝑇𝑈𝑈 = {𝑇𝑇𝑙𝑙+1, … ,𝑇𝑇𝑢𝑢}
𝑇𝑇𝑉𝑉 = {𝑇𝑇𝑢𝑢+1, … ,𝑇𝑇𝑣𝑣}
𝑇𝑇𝑇𝑇 = {𝑇𝑇𝑣𝑣+1, . . ,𝑇𝑇60000}

The intermediate value labels 𝑀𝑀 associated with these power traces are shown in (3).

 M = 𝑀𝑀𝐿𝐿 + 𝑀𝑀𝑉𝑉 + 𝑀𝑀𝑇𝑇
𝑀𝑀𝐿𝐿 = {𝑀𝑀0, … ,𝑀𝑀𝑙𝑙} (3)

 𝑀𝑀𝑉𝑉 = {𝑀𝑀𝑢𝑢+1, … ,𝑀𝑀𝑣𝑣}
 𝑀𝑀𝑇𝑇 = {𝑀𝑀𝑣𝑣+1, … ,𝑀𝑀𝑡𝑡}

Where 𝑙𝑙, 𝑢𝑢, 𝑣𝑣 and 𝑡𝑡 denote the length of each dataset, respectively. These intermediate

values can be obtained by (4) [24]. In (4), 𝑀𝑀𝑖𝑖 and 𝑚𝑚𝑉𝑉𝑠𝑠𝑘𝑘𝑖𝑖 represent the 𝑖𝑖-th intermediate value
and the 𝑖𝑖-th mask value, respectively. 𝑝𝑝𝑖𝑖 and 𝑚𝑚𝑉𝑉𝑠𝑠𝑘𝑘𝑖𝑖 represent the 𝑖𝑖-th plaintext and the 𝑖𝑖-th
key, respectively. The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the byte substitution operation in the AES algorithm.

 𝑀𝑀𝑖𝑖 = 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑖𝑖 ⊕ 𝑘𝑘𝑖𝑖) ⊕𝑚𝑚𝑉𝑉𝑠𝑠𝑘𝑘𝑖𝑖 (4)

Before training the model, we need to perform the pre-processing operation to select the

power interval. The Pearson Correlation Coefficient (PCC) [26] is used for pre-processing
operations. The PCC is shown in (5).

ρ𝑇𝑇,𝑀𝑀 = 𝐸𝐸[(𝑇𝑇−μ𝑇𝑇)(𝑀𝑀−μ𝑀𝑀)]

σ𝑇𝑇σ𝑀𝑀
 (5)

Where μ𝑇𝑇 and μ𝑍𝑍 denote covariance of the power traces 𝑇𝑇 and intermediate values 𝑀𝑀,
respectively.The Σ𝑇𝑇 and σ𝑍𝑍 denote standard deviation of 𝑇𝑇 and 𝑍𝑍, respectively. We obtained
the PCCs associated with 1400 power points in ASCAD_f by (5). These PCCs are shown in
Fig. 8. We then obtained the PCCs associated with 1400 power points in ASCAD_r using the
same operation. These PCCs are shown in Fig. 9.

748 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

Fig. 8. About the PCC of 1400 power points in ASCAD_f.

Fig. 9. About the PCC of 1400 power points in ASCAD_r.

According to PCC, we can find the corresponding power points in ASCAD_f and
ASCAD_r respectively. The power interval composed of these power points is used as the
sample in our experiment.

AES_HD dataset: The AES_HD dataset targets an unprotected implementation of AES-128.
This dataset contains 100,000 power traces, each power trace containing 1250 power points.
We took 700 power points with high PCC using (5) for the experiment. These 700 power
points are shown in Fig. 10.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 749

Fig. 10. The power values of 700 power points in the AES_HD dataset.

4.2. The training process of semi-supervised SCA model
The training process of semi-supervised SCA model differs from that of supervised SCA
model. This training process includes two phases: the pre-training phase and the training phase.
In the pre-training phase, the model is trained on a labeled dataset where the labels are
intermediate values. After a period of time, the model reaches the level of predicting
intermediate values based on power traces. In the training phase, the model is trained on a
mixed dataset that contains both labeled and unlabeled power traces. When this model is
trained on the unlabeled power traces, it generates some pseudo-labels. After these pseudo
labels are filtered, some of them are added to the mixed dataset. This dataset is used as a train
set for the model. The training process of the semi-supervised model is shown in Algorithm
1.

Algorithm 1 The training process of semi-supervised SCA model.
Input: Train set with labels: 𝐷𝐷𝐿𝐿 = {(𝑡𝑡𝑖𝑖𝐿𝐿 , 𝑙𝑙𝑖𝑖𝐿𝐿) | 𝑖𝑖 ∈ [0, 𝑁𝑁)}.
 Train set without labels: 𝐷𝐷𝑈𝑈 = �𝑡𝑡𝑗𝑗𝑈𝑈� 𝑗𝑗 ∈ [0, 𝑀𝑀)}.
1: for 𝑒𝑒𝑝𝑝𝑉𝑉𝑝𝑝−𝑡𝑡𝑉𝑉𝑚𝑚𝑖𝑖𝑡𝑡 ← 0 Do
2: for 𝑖𝑖 ← 0 Do
3: (𝑡𝑡𝑖𝑖𝐿𝐿 , 𝑙𝑙𝑖𝑖𝐿𝐿) ← 𝐷𝐷𝐿𝐿 .
4: Model_pre-train(𝑡𝑡𝑖𝑖𝐿𝐿 , 𝑙𝑙𝑖𝑖𝐿𝐿).
5: end for
6: end for
7: for 𝑒𝑒𝑡𝑡𝑉𝑉𝑚𝑚𝑖𝑖𝑡𝑡 ← 0 Do
8: for 𝑗𝑗 ← 0 Do
9: 𝑡𝑡𝑙𝑙𝑈𝑈 ← 𝐷𝐷𝑈𝑈 .
10: Model_train(𝑡𝑡𝑙𝑙𝑈𝑈).
11: The model generates pseudo-label 𝑝𝑝𝑗𝑗𝑈𝑈.
12: Determine whether the confidence level of 𝑝𝑝𝑗𝑗𝑈𝑈 is greater than 0.1.
13: Determine whether the HW of 𝑝𝑝𝑗𝑗𝑈𝑈 is equal to the corresponding HW in the HWPF.
14: This 𝑝𝑝𝑗𝑗𝑈𝑈 is added to the pseudo-label dataset 𝐷𝐷𝑃𝑃 .
15: end for
16: for 𝑘𝑘 ← 0 Do
17: (𝑡𝑡𝑘𝑘𝑃𝑃, 𝑝𝑝𝑘𝑘𝑃𝑃) ← 𝐷𝐷𝑃𝑃.
18: Model_train(𝑡𝑡𝑘𝑘𝑃𝑃, 𝑝𝑝𝑘𝑘𝑃𝑃).

750 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

19: end for
20: end for

5. Experimental results and analysis

The GE [22] was used as the evaluation metric for this experiment. In SCA, GE is a

frequently used metric for evaluating the security of cryptographic implementations. GE
quantifies the number of attempts an attacker needs to make to successfully guess the secret
key. The use of GE allows for an effective evaluation of the attack effects of an SCA model.
The GE indicates the mean rank of real key sorted by predicted probabilities or scores. For
each power trace, the model predicts all probability that guesses key 𝑘𝑘∗ are real key 𝑘𝑘𝑐𝑐. These
possibilities are accumulated and ranked. The GE is 0 when 𝑘𝑘∗ with the highest probability is
equal to the 𝑘𝑘𝑐𝑐. The formula corresponding to GE is as follows.

𝐺𝐺𝐸𝐸 = 𝑉𝑉𝑣𝑣𝑒𝑒𝑉𝑉𝑉𝑉𝑎𝑎𝑒𝑒(∑ 𝑉𝑉𝑉𝑉𝑠𝑠𝑘𝑘(𝑘𝑘∗ = 𝑘𝑘𝑐𝑐)50

𝑖𝑖=1) (6)

This section focuses on evaluating the performance of HWFilter on the semi-supervised
SCA model. Semi-supervised SCA models include the HW model, the Hamming Distance
(HD) model, and the identity(ID) model. The ID model is the most widely used semi-
supervised SCA model. In this experiment, we tested the performance of HWFilter using the
ID model. We first compared the performance of ID model with HWPF and the performance
of ID model without HWPF by using the ASCAD_f. We classify the power traces into 3 levels,
where each level contains labeled power traces and unlabeled power traces. These three levels
are shown in (7).

 𝐿𝐿𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙1 𝑇𝑇𝐿𝐿: 80,𝑇𝑇𝑈𝑈: 7920 (1% 𝑣𝑣𝑠𝑠 99%) (7)

 𝐿𝐿𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙2 𝑇𝑇𝐿𝐿: 320,𝑇𝑇𝑈𝑈: 7680 (4% 𝑣𝑣𝑠𝑠 96%)
 𝐿𝐿𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙3 𝑇𝑇𝐿𝐿: 1600,𝑇𝑇𝑈𝑈: 6400 (20% 𝑣𝑣𝑠𝑠 80%)

We used ASCAD_f and ASCAD_r to conduct the experiments, respectively. Fig. 11

shows the GE of different ID models on ASCAD_f. The performance of ID models with
HWPF is better than those without HWPF when the number of power traces with intermediate
values is very small.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 751

Fig. 11. The GE results of different ID models on ASCAD_f.

We then tested the performance of ID model with HWPF on the ASCAD_r. Although the

ASCAD_r is more difficult than the ASCAD_f dataset, ID model with HWPF still performs
well. The ID model with HWPF can use fewer power traces to recover key when the number
of power traces with intermediate values is reduced. The performance of different ID model
on the ASCAD_r is shown in Fig. 12.

Fig. 12. The GE results of different ID models on ASCAD_r.

Table 2 shows the performance of HWPF on the AES_HD dataset. Although the

maximum PCC of the AES_HD dataset is only 0.041, HWPF can still improve the
performance of the ID model. When the number of labeled power traces is only 10,000, the
performance of the model with HWFilter is 12% higher than that of Picek et al. model [14].

Table 2. GE results on AES_HD dataset (– if not reached).

Dataset size Proposed method Picek et al., “2019[14]
500+24.5k - -
1k+24.5k 27523 -
10k+15k 10971 12385

https://link.springer.com/chapter/10.1007/978-3-030-15462-2_3

752 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

Table 3 shows the performance of HWPF on the ASCAD_f. The performance of the
semi-supervised SCA model with HWPF is higher than that of the supervised SCA model for
a smaller number of labeled power traces. As the number of labeled power consumption
trajectories increases, the performance of the semi-supervised SCA model with HWPF and the
supervised SCA model converge to be equal.

Table 3. GE results on ASCAD_f (– if not reached).

Dataset size Proposed method Ryad et al., “2020 [24]
250+11.75k 321 -
500+11.5k 54 265
5k+7k 33 36

Table 4 shows the performance of HWPF on the ASCAD_r. Semi-supervised SCA

models with HWPF still have advantages over supervised SCA models on ASCAD_r. The
semi-supervised SCA model with HWPF has maintained good performance under the
condition of being trained with different labeled power traces.

Table 4. GE results on ASCAD_r (– if not reached).

Dataset size Proposed method Ryad et al., “2020 [24]
250+11.75k - -
500+11.5k 201 375
5k+7k 47 53

6. Conclusions
In this paper, a HWFilter method is proposed to improve the performance of semi-supervised
SCA models. This method can reduce the number of erroneous pseudo-labels and accelerate
the convergence of the model. In addition, we propose a normal distribution method for
constructing HWPF. This HWPF can be used to filter pseudo-labels generated by semi-
supervised SCA models. We also designed the structure of the semi-supervised SCA model
using a grid search method. Finally, we conducted semi-supervised SCA experiments using
the ASCADv1 database and the AES_HD dataset. These experimental results show that
HWFilter can promote the training of semi-supervised SCA models. In particular, when the
number of labeled power traces is small, the model trained using the HWFilter method
outperforms the model trained using the supervised method. In this paper, we present some
methods to solve the problem of erroneous pseudo-labels that hinder the training of semi-
supervised SCA models. More research is needed in the future to investigate how semi-
supervised learning can further promote the development of the SCA field.

Acknowledgment
This research is supported by the Hunan Provincial Natural Science Foundation of
China(2022JJ30103), the Science and Technology Innovation Program of Hunan
Province(2016TP1020), "the 14th Five-Year Plan" Key Disciplines and Application oriented
Special Disciplines of Hunan Province(xiangjiaotong[2022]351), Open fund project of Hunan
Provincial Key Laboratory of Intelligent Information Processing and Application for
Hengyang Normal University(2022HSKFJJ011).

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 753

References
[1] Picek S, Perin G, Mariot L, et al., “Sok: Deep learning-based physical side-channel analysis,” ACM

Computing Surveys, vol. 55, no. 11, pp. 1-35, 2023. Article (CrossRef Link)
[2] Rijsdijk J, Wu L, Perin G, et al., “Reinforcement learning for hyperparameter tuning in deep

learning-based side-channel analysis,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2021, no. 3, pp. 677-707, 2021. Article (CrossRef Link)

[3] Ito A, Ueno R, Homma N, “Perceived information revisited: New metrics to evaluate success rate
of side-channel attacks,” IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2022, no. 4, pp. 228-254, 2022. Article (CrossRef Link)

[4] Yap T, Benamira A, Bhasin S, et al., “Peek into the Black-Box: Interpretable Neural Network using
SAT Equations in Side-Channel Analysis,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2023, no. 2, pp. 24-53, 2023. Article (CrossRef Link)

[5] Ramezanpour K, Ampadu P, Diehl W, “SCAUL: Power side-channel analysis with unsupervised
learning,” IEEE Transactions on Computers, vol. 69, no. 1, pp. 1626-1638, 2020.
Article (CrossRef Link)

[6] Cao, P., Zhang, C., Lu, X., “Cross-Device Profiled Side-Channel Attack with Unsupervised
Domain Adaptation,” IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2021, no. 4, pp. 27-56, 2021. Article(CrossRef Link)

[7] Kulow A, Schamberger T, Tebelmann L, et al., “Finding the needle in the haystack: Metrics for
best trace selection in unsupervised side-channel attacks on blinded RSA,” IEEE Transactions on
Information Forensics and Security, vol. 16, no. 3, pp. 3254-3268, 2021. Article(CrossRef Link)

[8] Cheng J, Liu W, Sun N, et al., “A machine learning low-dropout regulator-assisted differential
power analysis attack countermeasure with voltage scaling,” International Journal of Circuit
Theory and Applications, vol. 51, no. 7, pp. 3105-3117, 2023. Article(CrossRef Link)

[9] Do N T, Hoang V P, Pham C K, “Low Complexity Correlation Power Analysis by Combining
Power Trace Biasing and Correlation Distribution Techniques,” IEEE Access, vol. 10, pp. 17578-
17589, 2022. Article(CrossRef Link)

[10] Cai J, Hao J, Yang H, et al., “A review on semi-supervised clustering,” Information Sciences, vol.
632, pp. 164-200, 2023. Article (CrossRef Link)

[11] Van Engelen J E, Hoos H H, “A survey on semi-supervised learning,” Machine learning, vol. 109,
no. 2, pp. 373-440, 2020. Article(CrossRef Link)

[12] Taha K, “Semi-supervised and un-supervised clustering: A review and experimental evaluation,”
Information Systems, vol. 114, pp. 102178, 2023. Article (CrossRef Link)

[13] Chen Y, Tan X, Zhao B, et al., “Boosting Semi-Supervised Learning by Exploiting All Unlabeled
Data,” in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
Oxford, UK, pp. 7548-7557, 2023. Article (CrossRef Link)

[14] Picek S, Heuser A, Jovic A, et al., “Improving side-channel analysis through semi-supervised
learning,” in Proc. of International Conference on Smart Card Research and Advanced
Applications, Springer, Montpellier, France, pp. 35-50, 2019. Article (CrossRef Link)

[15] Batina L, Djukanovic M, Heuser A, et al., “It started with templates: The future of profiling in
side-channel analysis,” in Security of Ubiquitous Computing Systems: Selected Topics, vol. 3, 2021,
pp. 133-145. Article (CrossRef Link)

[16] Panoff M, Yu H, Shan H, et al., “A Review and Comparison of AI-enhanced Side Channel
Analysis,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 18, no.
3, pp. 1-20, 2022. Article (CrossRef Link)

[17] Hettwer B, Gehrer S, Güneysu T, “Applications of machine learning techniques in side-channel
attacks: a survey,” Journal of Cryptographic Engineering, vol. 10, pp. 135-162, 2020.
Article (CrossRef Link)

[18] Biao Liu, Zhao Ding, Yang Pan, Jiali Li, and Huamin Feng, “Side-channel attacks based on
collaborative learning,” in Proc. of Data Science: Third International Conference of Pioneering
Computer Scientists, Engineers and Educators, Springer, Changsha, China, pp. 549-557, 2017.
Article(CrossRef Link)

https://doi.org/10.1145/3569577
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2022.i4.228-254
https://doi.org/10.46586/tches.v2023.i2.24-53
https://doi.org/10.1109/TC.2020.3013196
https://doi.org/10.46586/tches.v2021.i4.27-56
https://doi.org/10.1109/TIFS.2021.3074884
https://doi.org/10.1002/cta.3583
https://doi.org/10.1109/ACCESS.2022.3150833
https://doi.org/10.1016/j.ins.2023.02.088
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1016/j.is.2023.102178
https://openaccess.thecvf.com/content/CVPR2023/papers/Chen_Boosting_Semi-Supervised_Learning_by_Exploiting_All_Unlabeled_Data_CVPR_2023_paper.pdf
http://doi.org/10.1007/978-3-030-15462-2_3
http://doi.org/10.1007/978-3-030-10591-4_8
https://dl.acm.org/doi/abs/10.1145/3517810
https://link.springer.com/article/10.1007/s13389-019-00212-8
https://doi.org/10.1007/978-981-10-6385-5_46

754 Zhang et al.: Improve the Performance of Semi-Supervised
Side-channel Analysis Using HWFilter Method

[19] Tang H, Jia K, “Towards discovering the effectiveness of moderately confident samples for semi-
supervised learning,” in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, New Orleans, USA, pp. 14658-14667, 2022. Article(CrossRef Link)

[20] Huan P T, Thong P H, Tuan T M, et al., “TS3FCM: trusted safe semi-supervised fuzzy clustering
method for data partition with high confidence,” Multimedia Tools and Applications, vol. 81, no.
9, pp. 12567-12598, 2022. Article(CrossRef Link)

[21] Wang W, Zhang M L, “Semi-supervised partial label learning via confidence-rated margin
maximization,” in Proc. of the 34th International Conference on Neural Information Processing
Systems, pp. 6982-6993, 2020. Article(CrossRef Link)

[22] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni, “The curse
of class imbalance and conflicting metrics with machine learning for side-channel evaluations,”
IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2019, no. 1, pp. 209-
237, 2018. Article(CrossRef Link)

[23] Zhang H, Yang W, “Template Attack Assisted Linear Cryptanalysis on Outer Rounds Protected
DES Implementations,” The Computer Journal, vol. 66, no. 6, pp. 1434-1451, 2023.
Article(CrossRef Link)

[24] Ryad Benadjila, "Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas, “Deep
learning for side-channel analysis and introduction to ascad database,” Journal of Cryptographic
Engineering, vol. 10, no. 2, pp. 163-188, 2020. Article(CrossRef Link)

[25] Huanhuan Ran, Shiping Wen, Qian Li, Yuting Cao, Kaibo Shi, and Tingwen Huang, “Compact
and stable memristive visual geometry group neural network,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 34, no 2, pp. 987-998, 2023. Article(CrossRef Link)

[26] Alexander Ly, Maarten Marsman, and Eric-Jan Wagenmakers, “Analytic posteriors for Pearson’s
correlation coefficient,” Statistica Neerlandica, vol. 72, no. 1, pp. 4-13, 2018.
Article(CrossRef Link)

Hong Zhang received the B.S. degree from Hunan Institute of Technology,
Hengyang, China, in 2019 and he is currently working toward a Master’s degree in
Hengyang Normal University, Hengyang, China. Since 2021, his current research
interests include embedded computing and information security.

Lang Li received his PhD and Master's degrees in computer science from Hunan
University, China, in 2010 and 2006, respectively, and earned his BS degree in
circuits and systems from Hunan Normal University, China in 1996. Since 2011, he
has been working as a professor in the College of Computer Science and Technology
at the Hengyang Normal University, China. His research interests include embedded
computing and information security.

Di Li received the B.S. degree from Hunan University of Science and Engineer-
ing, Yongzhou, China, in 2020 and he is currently working toward a Master’s degree
in Hengyang Normal University, Hengyang, China. Since 2020, his current research
interests include embedded computing and information security.

https://openaccess.thecvf.com/content/CVPR2022/papers/Tang_Towards_Discovering_the_Effectiveness_of_Moderately_Confident_Samples_for_Semi-Supervised_CVPR_2022_paper.pdf
https://doi.org/10.1007/s11042-022-12133-6
https://dl.acm.org/doi/abs/10.5555/3495724.3496310
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1093/comjnl/bxac020
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1109/TNNLS.2021.3104860
https://doi.org/10.1111/stan.12111

